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Abstract The entanglement of formation (EoF) between one-dimensional spatial regions is
calculated for one and two identical, non-interacting, non-relativistic bosons. Thermal states
are approximated by mixtures of up to 13 energy eigenstates. The EoF is found to diminish
as inverse temperature to a power of ∼0.62 in one spatial dimension.
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1 Introduction

The entanglement of quantum systems has been a vigorous area of research for the last
fifteen years. This has been stimulated by the realisation that entanglement is the essential
ingredient in many applications in quantum communication, [1], quantum teleportation, [2],
quantum cryptography, [3–5], and quantum computing [6, 7]. However, a motivation of
longer standing is the appreciation that entanglement is necessary for the logical coherence
of quantum mechanics. The resolution of the EPR problem, [8], is the archetypal example.

Entanglement is not an intrinsic property of a quantum system, as emphasised in [9, 10].
Entanglement exists only with respect to a given partition of the system into component
parts. Specifically it must be possible to express the Hilbert space in question as the direct
product of the Hilbert spaces of constituents, H = HA ⊗ HB . With respect to this particular
partition a given pure state is said to be separable if and only if it can be written as the
direct product of A and B states, i.e., |ψ〉 = |a〉A ⊗ |b〉B , where |a〉A ∈ HA and |b〉B ∈ HB .
A state which cannot be so factorised is said to be entangled with respect to the partition
H = HA ⊗ HB .

A possible partition is the spatial partition which results from the field description. In
this partition the objects whose states form the component parts are not the particles but
spatial regions. Spatial entanglement of this sort arises naturally below the BEC transition
temperature, [11–16], essentially because of the dominance of a single energy eigenstate.
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Clearly, there can be no entanglement with respect to a partition into particles when only
one particle is present. However, the partition into spatial regions is just as valid for one par-
ticle as for many, so the potential for spatial entanglement exists for one particle systems,
[9, 17]. The suggestion that the spatial entanglement of single particle systems should be
experimentally detectable probably remains controversial, criticisms of early proposals be-
ing given in [18–20]. However, schemes to detect single particle and/or spatial entanglement
unambiguously continue to be devised and attempted, e.g. [21–25], but are so far probably
not free of loopholes.

Quantification of the degree of entanglement has been widely discussed, e.g., [26–30].
Many different measures are available, but often present computational difficulties, espe-
cially for mixed states. Whilst spatial entanglement in systems of free bosons has been
calculated before, e.g. [11–16], this has been restricted to quantification via the negativity,
[15, 31], or by purity measures, [14, 27]. In effect these entanglement witnesses are re-
stricted to quantifying the entanglement of just a single mode, and hence are all of order
unity or less despite the many-particle systems considered. In contrast, here we calculate the
entanglement of formation (EoF, [32]). This is the original feature of this paper.

The definition of the EoF (given in the Appendix) is uncontentious but unfortunately
provides difficulties as regards explicit computation in the general case for mixed states.
A closed form expression for the EoF has been given in [33, 34] for the case of an arbitrary
mixture of two qubits. Simple expressions have also been found for isotropic states (the
class of density matrices which are convex mixtures of a maximally entangled state and the
maximally mixed state), [35]. However, the general case remains a challenge to evaluate. In
this paper, the EoF has been evaluated by numerical optimisation (the details of which are
described in the Appendix). The complexity of the computation of the EoF causes attention
to be restricted to small numbers of particles and states. Nevertheless, we evaluate the spatial
EoF for thermal states of one and two non-relativistic, non-interacting bosons. The thermal
states are defined as mixtures of up to 13 energy eigenstates of a confining ‘box’ potential.
The calculations are restricted to the 1D case.

2 Formulation of Partitioned States

Numerical examples will be restricted to the 1D case and hence the formulation below is
also restricted to 1D, though it generalises to 3D in a straightforward manner. We consider
non-relativistic, non-interacting bosons confined either through some central potential or
within a box. The energy eigenfunctions of the Hamiltonian, Ĥ = −�

2∂2
x /2m + V (x), are

denoted u(n, x). The potential is assumed to produce an infinite set of bound state eigen-
functions which are orthonormal and complete. Examples include a harmonic potential or
box confinement. The latter case will be used in numerical examples, although not nec-
essary for the general development. We shall refer to the total spatial region as a ‘box’ for

convenience, but this may be infinite space. The true box modes are u(n, x) =
√

2
L

sin( nπx′
L

),

where x ′ = x + L/2, which vanish at the box walls, x = ±L/2.
In terms of a Fock basis, a quantum field operator is ψ̂(x) = ∑∞

n=1 u(n, x)ân. For-
mulation of the partitioned states broadly follows [11]. The creation operator for a mode
specified by f (x) can be written f̂ + = ∫

Box
f (x)ψ̂+(x)dx and f is assumed normalised,∫

Box
|f (x)|2dx = 1. A normalised state of a single particle in this mode is then f̂ +|0〉. Now

consider the box to consist of two spatial partitions, labelled A and B . For region A, the
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mode function is modified such that its support is A. Hence the creation operator for a par-
ticle in this mode, and hence in region A, is f̂ +

A , where,

αf̂ +
A =

∫

x∈A

f (x)ψ̂+(x)dx. (1)

The constant, α, is defined so that f̂ +
A |0〉 is a normalised state representing a single particle

in this mode in region A. Hence we require, |α|2 = ∫
x∈A

|f (x)|2dx. Creation operators for
region B are defined analogously. Now choosing f (x) = u(n, x), we have,

f̂ + → â+
n = αA

n â+
An + αB

n â+
Bn + αO

n â+
On, (2)

where,

â+
An = 1

αA
n

∞∑
k=1

RA
nkâ

+
k (3)

and,

RA
nk ≡

∫

x∈A

u(n, x)u(k, x)∗dx, (4)

and,

|αA
n |2 =

∞∑
k=1

|RA
nk|2 =

∫

x∈A

|u(n, x)|2dx. (5)

The latter expression follows from the completeness relation for the eigenfunctions,∑∞
k=1 u(k, x)∗u(k, y) = δ(x − y), which also gives

∑∞
k=1 RA∗

mkR
A
nk = RA

nm. Equation (5) also
holds for the B region. The commutation relations between the partitioned creation and
annihilation operators are,

[
â+

An, â
+
Ak

] = [
â+

An, â
+
Bk

] = ⌊
âAn, âAk

⌋ = ⌊
âAn, âBk

⌋ = [
âAm, â+

Bn

] = 0. (6)

The last of these follows from
∫

x∈A
dx

∫
y∈B

dy · un(x)um(y)∗δ(x − y) ≡ 0. However, the
distinction between the partitioned operators and the true Fock operators results from the
final commutator,

SA
nm ≡ [

âAn, â
+
Am

] = 1

αA∗
n αA

m

∞∑
k=1

RA∗
nk RA

mk = RA
mn

αA∗
n αA

m

. (7)

This is unity when n = m, i.e. SA
nn = 1, consistent with Fock space, [âm, â+

n ] = δnm. However,
unlike the latter, (7) is also non-zero in general for n �= m. It is this latter fact that gives the
partition its non-trivial structure and leads to the entanglement of formation falling below
its maximum possible value in certain cases. The Fock states for the whole box are,

|N1(k1),N2(k2), . . .〉 ≡ (â+
k1

)N1

√
N1!

· (â+
k2

)N2

√
N2!

· · · |0〉. (8)

Analogously we can define partitioned states with respect to the A and B regions by,

ξ |N1(k1),N2(k2), . . .〉A ≡ (â+
Ak1

)N1

√
N1!

· (â+
Ak2

)N2

√
N2!

· · · |0〉 (9)
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and similarly with A replaced by B . However, caution is needed when dealing with these
partitioned states since they are not all mutually orthogonal. Indeed, they would not all be
normalised, either, were it not for the introduction of the ξ coefficient. Partitioned states of
N particles all in the same energy eigenstate, k, i.e.,

|N(k)〉A ≡ (â+
Ak)

N

√
N ! · |0〉 (10)

are normalised and mutually orthogonal. Hence, ξ = 1 in these cases. However, the parti-
tioned states of two or three particles of differing energy require ξ > 1 in order to be nor-
malised in general. For the states |nm〉A ≡ |1(n),1(m)〉A and |nmq〉A ≡ |1(n),1(m),1(q)〉A,
where n,m and q are all different, normalisation requires |ξA

nm|2 = 〈0|âAmâAnâ
+
Anâ

+
Am|0〉 and

|ξA
nmq |2 = 〈0|âAq âAmâAnâ

+
Anâ

+
Amâ+

Aq |0〉. Repeated use of the commutation relation, (7), leads
to,

∣∣ξA
nm

∣∣2 = 1 + ∣∣SA
nm

∣∣2
, (11)

∣∣ξA
nmq

∣∣2 = 1 + 2� (
SA

nmSA
nqS

A
mq

) +
[∣∣SA

nm

∣∣2 + ∣∣SA
nq

∣∣2 + ∣∣SA
mq

∣∣2
]
. (12)

Two single-particle partitioned states in different energy states, |n〉A ≡ |1(n)〉A and |m〉A ≡
|1(m)〉A, are not orthogonal in general. In fact,

A〈n|m〉A = 〈0| [âAn, â
+
Am

] |0〉 = SA
nm. (13)

Similarly, a pair of two-particle states, say |nq〉A and |nm〉A, will not in general be orthog-
onal, as reduction of A〈nm|nq〉A = 〈0|âAmâAnâ

+
Anâ

+
Aq |0〉 using the commutation relations

shows. All the above relations apply equally with region A replaced by B . Partitioned states
for one region are all orthogonal to partitioned states for another region. Partitioned states
of N particles are orthogonal to any partitioned state of a differing number of particles.

3 Single Particle Orthogonalisation Procedure

Hereafter we shall assume that the regions A and B are each half of the box. For a pure
energy eigenstate the EoF would then be unity. The density matrix for a mixture of NS

single particle energy eigenstates n1, n2, . . . is,

ρ̂ =
NS∑
i=1

pi |ni〉〈ni |. (14)

Each single particle energy eigenstate can be written in the form,

|nj 〉 = αA
nj

|nj 〉A|0〉B + αB
nj

|0〉A|nj 〉B, (15)

∣∣αA,B
nj

∣∣2 =
∫

x∈A,B

∣∣u(nj , x)
∣∣2

dx. (16)

We have written (15) with arbitrary α coefficients but we consider only |αA,B
j |2 = 1/2 in

the numerical examples, i.e. the box is partitioned into equal halves. Because the partitioned
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states {|nj 〉A,B} are not orthonormal, we need to introduce an orthonormalizing scheme be-
fore attempting to find the EoF numerically. The orthonormalized single-particle A-partition
states are denoted {|ψA

j 〉}. In terms of these the |nj 〉A states are written,

∣∣nj

〉
A

=
j∑

k=1

CA
jk

∣∣ψA
k

〉
. (17)

Similarly, the B-system states are written |nj 〉B = ∑j

k=1 CB
jk|ψB

k 〉. The first of the basis
vectors is just,

|ψA,B
1 〉 = |n1〉A,B . (18)

For j > 1, orthonormality gives the first coefficient in (17) as,

CA
j1 = A〈n1|nj 〉A = SA

[1j ] (19)

where for clarity we have introduced the notation SA
[pq] to stand for SA

KL evaluated at K = np

and L = nq . The remaining coefficients are found by successively forming the scalar product
of (17) with each state |ψA

k 〉 in turn. This leads to the following general expression which
applies for 1 < k < j ,

CA
jk = 1

CA∗
kk

[
SA

[kj ] −
k−1∑
i=1

CA∗
ki CA

ji

]
. (20)

The last coefficient for each ‘j ’ is given by,

CA
jj =

√√√√1 −
j−1∑
k=1

∣∣CA
jk

∣∣2
. (21)

Note that (20) involves finding the kth coefficient for the j th state in terms of, (a) the ith
coefficients of the j th state, with i < k and which have thus already been found, and, (b) the
coefficients for the kth states with k < j , which have also already been found. Thus the only
additional evaluation required for each new CA

jk is the scalar product SA
[kj ] from (4), (5), (7).

Equations (19)–(21) apply equally with A replaced throughout by B .
The orthonormalization scheme of (17)–(21) results in the NS energy states, (15), being

expressible in terms of NS +1 A-system states and NS +1 B-system states. These states are
the A-vacuum, |0〉A, and the NS occupied A-states, |ψA

j 〉, plus the B-system equivalents.
Hence, the density matrix for a mixture of NS distinct energy states is a special case of an
(NS + 1) × (NS + 1) bipartite density matrix.

4 Mixtures Approximating the Thermal State of a Single Particle

In this section we consider single particle mixtures of the first ten consecutive energy states,
resulting in a density matrix of dimension 121. The probabilities are chosen to approximate a
thermal state at temperature T , and a range of values of E1/kT are analysed from 0.001 to 2
(where E1 is the ground state energy and k is Boltzmann’s constant). Because we are using
only 10 energy states, the mixture ceases to be an accurate representation of the thermal
state when more than 10 states would contribute significantly to the true thermal mixture.
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Fig. 1 EoF for thermal states of one and two bosons compared. The representation of the thermal state be-
comes poor for E1/kT < 0.03 for one particle, and for E11/kT < 0.2 for two particles, but the extrapolation
to zero entanglement at high temperature is clear (as illustrated by the T −n fits)

The true thermal mixture would have probabilities relative to that of the ground state given
by the Boltzmann factor,1

pn

p1
= exp

{
− E1

kT

(
n2 − 1

)}
. (22)

This is used as the basis for our assumed probabilities. However, the normalisation is ad-
justed to ensure the probabilities sum to unity over just the first 10 states. The approximation
to the thermal state is expected to be reasonable for kT ≤ 30E1, for which the smallest con-
tributing probability (p10) is ≤5% of the largest (p1).

The EoF was found using the numerical method described in the Appendix and the result
for each temperature is shown in Fig. 1 (black curve) and in Table 1. A surprise is that the
case of equal probabilities (E1/kT = 0) does not produce the minimum EoF. Actually the
minimum EoF occurs for the unequal probabilities labelled E1/kT = 0.01, see Table 1, for
which p1 exceeds p10 by about ×2.7 (though this case is not a good representation of a
thermal state).

However, for E1/kT ≥ 0.03, for which the approximation to the thermal state is good,
the behaviour of the EoF is as expected. At temperatures kT < E1/2 the thermal state ap-
proximates to just ground state occupation, and hence the EoF becomes unity. However,
at higher temperatures the EoF reduces steadily. Figure 1 suggests that the EoF is tending
towards zero at high temperature—until the use of only 10 states limits the accuracy of the

1Since we are considering states of just one particle the Bose distribution is not appropriate.
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Table 1 Entanglement of
10-state mixtures approximating
the thermal state of a single
particle at various temperatures
(50/50 partition)

E1/kT EoF

0 0.1217

0.001 0.1184

0.01 0.1020

0.03 0.1167

0.05 0.1492

0.1 0.2235

0.2 0.3471

0.4 0.5578

0.6 0.7211

0.8 0.8331

1 0.9035

1.3 0.9591

1.6 0.9831

2 0.9949

representation of the thermal state. A power law fit suggests EoF ∝ T −0.63 for one particle
in 1D when kT is sufficiently larger than E1.

5 The EoF of Two-Particle Thermal States

Consideration is restricted to mixtures of just 13 two-particle energy states, namely the states
whose energy quantum numbers are (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4),
(2,5), (3,3), (3,4), (3,5) and (4,4). This includes all states whose energy is 17 times the
ground state, (1,1), energy or less. The density matrix is,

ρ̂ =
∑
n,m

pnm|n,m〉〈n,m| (23)

where (n,m) is summed over the 13 values indicated above. The probabilities, pnm, are
defined by the Boltzmann distribution,

pnm

p11
= exp

{
− E1

kT

(
n2 + m2

2
− 1

)}
. (24)

The probabilities are renormalized so that they sum to unity over the 13 states considered. It
is expected that temperatures up to kT /E11 ∼ 5 should be well represented by just 13 states,
for which the smallest contributing probability (p12) is ≤4% of the largest (p1). For higher
temperatures our 13-state mixture will depart from the true thermal state. Each of the 13
pure two-particle states can be expressed in terms of partitioned states in one of two ways,
depending upon whether n = m or n �= m, thus,

n = m: |nn〉 = 1

2

[|0〉A|nn〉B + √
2|n〉A|n〉B + |nn〉A|0〉B

]
, (25)

n �= m: |nm〉 = 1

2

[
ξnm

{|0〉A|nm〉B + |nm〉A|0〉B
} + |n〉A|m〉B + |m〉A|n〉B

]
. (26)
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The main task we have in formulating the problem is to carry out the orthonormalizing
process. This is required for both the one-particle partitioned states, |n〉A,B , and also the
two particle partitioned states, |nm〉A,B , since neither are orthonormal as they stand. The
five one-particle states, {|i〉A, i = 1,2, . . . ,5}, are orthonormalized precisely as described
previously, the orthonormalized set of states being denoted {|ψA

i 〉, i = 1,2, . . . ,5}, where
|ψA

1 〉 ≡ |1〉A and the remaining states are defined as in Sect. 3. Because (25), (26) involve
sums of products of one particle states, the numerical coefficients which finally appear are
obtained as sums of products of the C

A,B
jk coefficients of Sect. 3.

Orthonormalization of the two-particle states is similar. There are 13 two-particle
states for each partition, |11〉A, |12〉A, |13〉A, |14〉A, |15〉A, |22〉A, |23〉A, |24〉A, |25〉A, |33〉A,
|34〉A, |35〉A, |44〉A. These are to be expressed in terms of the orthonormalized states
{|θA

I , I = 1,2, . . . ,13〉}, where |θA
1 〉 ≡ |11〉A, via the definitions,

|ij 〉A =
J∑

K=1

DA
JK

∣∣θA
K

〉
(27)

where the capital indices take values in the range 1,2, . . . ,13, labelling the two-particle
states, and state J denotes (ij ). With this notation, the D-coefficients are found from a
similar formula to (20), i.e.,

for 1 < K < J, DA
JK = 1

DA∗
KK

[

A

〈K|J 〉A −
K−1∑
I=1

DA∗
KID

A
JI

]
, (28)

for K = 1, DA
J1 = A〈1|J 〉A (29)

where the two-particle scalar products, A〈K|.J 〉A, are found from formulae depending upon
which quantum numbers are common, i.e.,

A〈nm|pq〉A = [
SA

npSA
mq + SA

nqS
A
mp

]
/ξnmξpq, (30)

A〈nm|nq〉A = [
SA

mq + SA
nmSA

nq

]
/ξnmξnq, (31)

A〈nm|qq〉A = √
2SA

nqS
A
mq/ξnm, (32)

A〈nq|qq〉A = √
2SA

nq/ξnq, (33)

A〈nn|qq〉A = (
SA

nq

)2
. (34)

These expressions all follow from the commutation relations, (7). The final coefficient is
determined by normalisation,

DA
JJ =

√√√√1 −
J−1∑
K=1

∣∣DA
JK

∣∣2
. (35)

After some labour, the components of the density matrix, (23), can thus be found in
terms of the orthonormal basis formed by the direct product of the 19 A-partition states,
|0〉A, {|ψA

i 〉, i = 1,2, . . . ,5}, {|θA
I , I = 1,2, . . . ,13〉}, with the B-partition equivalents. The

resulting density matrix is of dimension 19 × 19 = 361, though its rank is, of course, only
13.
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Table 2 Entanglement of
13-state mixtures approximating
the thermal state of two particles
at various temperatures (50/50
partition)

E11/kT EoF

p = 1/13 0.4613

0.05 0.4147

0.1 0.4020

0.2 0.4504

0.3 0.5436

0.4 0.6457

0.6 0.8372

0.8 0.9966

1.0 1.1226

1.4 1.2911

2.0 1.4148

3.0 1.4809

∞ 1.5

The EoF of thermal mixtures of these 13 two-particle energy eigenstates has been found
using the numerical procedure described in the Appendix. The results are shown plotted
against inverse temperature in Fig. 1 and compared with the EoF of the one-particle thermal
states. The salient feature is that the EoF reduces with increasing temperature, at least so
long as E1/kT > 0.2 when the representation of the thermal state is good.

Like the one particle case, a surprise is that the case of equal probabilities (E11/kT = 0)

does not produce the minimum EoF. Actually the minimum EoF occurs for the unequal
probabilities labelled E1/kT = 0.1, see Table 2, for which p1 exceeds the smallest proba-
bility, p12, by about ×5 (though this case is not a good representation of a thermal state).

Figure 1 shows that the EoF of the two-particle thermal state approaches 1.5 at low
temperatures when the mixture becomes the pure ground state. It is easily checked that this
is the correct result for a pure state of two identical bosons in the same state.2 Comparison
with the one-particle thermal state shows that the EoF is larger for two particles (at a given
temperature). As the temperature is increased the EoF reduces steadily (until E11/kT < 0.2
when the representation of the thermal state becomes poor). A power law fit suggests EoF ∝
T −0.62 for two particles in 1D when kT is sufficiently larger than E11. This dependence on
temperature is almost identical to the one-particle result of Sect. 3.

Appendix: Definition and Numerical Determination of the EoF

For pure quantum states of a composite system, the entanglement of formation is de-
fined as the von Neumann entropy of the reduced density matrix of one component part.
Thus, if |ψ〉 is the state of the composite system, then EoF = SvN(ρ̂A), where ρ̂A =
TrB(|ψ〉〈ψ |) = ∑

b∈B〈b|ψ〉〈ψ |b〉, where A and B are the components parts, and SvN(ρ̂A) ≡

2For N bosons in the same energy state a good approximation to the EoF for a 50/50 partition is 1+ log2
√

N .
This provides an upper bound to the spatial EoF which can be obtained from a BEC. For example, a million
atoms in the condensed phase produce an EoF of only 11 ebits. The spatial EoF for N identical bosons in a
pure state with differing energies always exceeds that for equal energies. The upper bound for the spatial EoF
of N bosons in a pure state with differing energies is N ebits, which contrasts sharply with the EoF for equal
energies. The upper bound of N ebits is realised in the case of states of equal parity and a 50–50 partition.
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−Tr[ρ̂A log2 ρ̂A]. Note that we use log2 in the definition of entanglement throughout this pa-
per, rather than adopting a varying base according to the dimension of the Hilbert space, as
do some authors. The unit of entanglement is that of a two qubit Bell state, or singlet state
(one ebit).

The EoF may be easy to evaluate directly from its definition for any explicitly defined
pure quantum state. However, the situation is different for mixed states. The density matrix,
ρ̂, defining a mixed state will have many possible decompositions into explicit mixtures of
pure states, |ψi〉. That is, there will be many ways in which to express the density matrix as
ρ̂ = ∑

i pi |ψi〉〈ψi |, where the pi are real probabilities in the range [0,1] and the states |ψi〉
are normalised but otherwise arbitrary and need not be orthogonal or linearly independent.
The average entanglement of this specific decomposition is defined as the average of the
entanglements of its pure states, Eav = ∑

i piEoF(|ψi〉). But the value of Eav depends upon
the decomposition, and hence cannot be the true entanglement in general, since this depends
only upon the density matrix and the chosen partition. The entanglement of formation is
defined as the minimum value of Eav for any decomposition, EoF = MIN{|ψi 〉}(Eav). Hence,
to find the EoF requires this minimization problem to be solved.

The method of conjugate gradients was used. The particular procedure employed has
been described in [36, 37]. The method relies upon all possible decompositions, ρ̂ =∑

j p′
j |φj 〉〈φj |, of a given density matrix being expressible in terms of a right-unitary trans-

formation from some arbitrary initial decomposition, ρ̂ = ∑
i pi |ψi〉〈ψi |. In these expres-

sions j runs from 1 to J whereas i runs from 1 to I where J ≥ I . The values of I or J

are the cardinalities of the particular decompositions. Thus, there exists a right-unitary ma-
trix U which connects the two decompositions, |φ̃j 〉 = ∑I

i=1 Uji |ψ̃i〉, where U+U = 1I×I

and the tilde on the states denotes that these are the sub-normalized states defined by
|ψ̃i〉 = √

pi |ψi〉, |φ̃i〉 = √
p′

i |φi〉. To capture all possible decompositions the initial decom-
position is taken to have cardinality equal to the rank of ρ̂, i.e., I = r . Parameterizing all
right-unitary matrices in some convenient manner thus provides a parameter space whose
points are in one-to-one correspondence with the set of all possible decompositions. In our
formulation we preferred to search a space of fixed cardinality, starting with a decomposi-
tion defined by r non-zero vectors plus ‘padding’ by the required number of additional zero
vectors. (All ‘J ’ vectors will subsequently become non-zero in general). The possibility of
improved minima of different cardinality was explored by running the program separately
for different cardinalities. The advantage of this is that the matrices, U , are then square, and
hence unitary, and can be expressed in terms of an Hermitian matrix, �, as U = exp{i�}.

The problem is to find a point in this parameter space which minimises Eav =∑
i p

′
iEoF(|φi〉). The basic strategy is to evaluate the gradient of Eav in parameter space

and then to move in parameter space such that Eav reduces as quickly as possible. The
obvious algorithm, to move along the negative gradient, produces the method of steepest
descents. The method of conjugate gradients is a refinement of this which generally im-
proves the rate of convergence. The expression for the gradient of Eav was taken from [37],
(10), which gives,

dEav =
∑
i,j

gjid�ij , where, gji = iTrA
{[

log2

(
ρ̂A

j

) − log2

(
ρ̂A

i

)]
TrB

(|φ̃j 〉〈φ̃i |
)}

(A.1)

where ρ̂i = |φi〉〈φi |, ρ̂A
i = TrB(ρ̂i) and TrA,B represent tracing-out the states of the indi-

cated partition, e.g. TrB(. . .) ≡ ∑
x=B-states B〈x| . . . |x〉B . Note that the gradient matrix, g, is

evaluated at the current position in parameter space, i.e. in terms of the current (evolving)
decomposition, {|φ̃j 〉}. The bulk of the computational effort is expended in re-evaluating
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the gradient matrix at each new point, since its calculation requires eigenvalue extraction in
order to find log2(ρ̂

A
i ).

Some care is necessary since the J × J real coordinates of the parameter space are not
�ij , since these are complex with �ij = �∗

j i , but rather �(�ij ) for i ≤ j and Im(�ij ) for
i > j . Different variants of the conjugate gradient method involve different expressions for
the conjugate gradient, specifically by how much it differs from the negative gradient. The
Polak-Ribiere variant was employed here. In addition, a ‘restart’ was applied every N steps,
with N set to the square of the rank. A ‘restart’ resets the conjugate gradient to the negative
gradient. Finally, each step requires the line-minimum along the direction of the current
conjugate gradient to be found. For this, Brent’s method was used.

A subtlety is that, for initial states of sufficient symmetry, the first order gradient can
lead to only a sub-set of parameter space being explored. For example, if the coefficients of
the input states are all real (as they are in this paper) then the above algorithm leads only
to states with real coefficients, despite complex coefficients being essential to obtain the
true minimum of Eav in most cases. In our implementation this problem was overcome by
alternating the method of conjugate gradients with a simple search along prescribed curves
in parameter space, a crude but effective strategy for symmetry breaking.

The major practical difficulty with non-linear optimisation is the distinction between
a global minimum and a local minimum. Algorithms like the conjugate gradient method
are attracted to local minima. In general there is no guarantee that this will be the global
optimum. However, it has been suggested, [38], that local minima of Eav are also global
minima. This is a major boon to the numerical determination of the EoF. It is easy to check
that a local minimum has been reached, simply by evaluation of the finite differences in all
coordinate directions. These should all be positive, but some components tend to be small
and negative due to numerical limitations. A convergence parameter can be defined as the
ratio of the algebraically smallest finite difference to the average value in all directions. This
convergence parameter was of considerable utility in practice, further iterations being made
until any negative value became suitably small in magnitude.

In passing we note that in all the cases reported here a cardinality equal to the rank of
the density matrix was sufficient to obtain the minimum Eav , i.e. an optimal decomposition.
This was demonstrated simply by trying larger cardinalities, but these never produced an
improved minimum for our states. It is known that this is not always the case. Examples
where the EoF is non-zero and the cardinality of the optimal decomposition exceeds the
rank have been given in [35] and [36]. The latter example considers the so-called Horodecki
3 × 3 states, [39], whose rank is 7. The EoF of these states was evaluated numerically in
[36]. The minimum was not obtained until a cardinality of 14, twice the rank, was used. We
have repeated this exercise to test our numerical routines and confirm this result (and also
that the magnitude of the EoF is very small, less than 0.01).
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